Ученые обнаружили существование нового типа квазичастиц

u0420u043eu0441u0441u0438u0439u0441u043au0438u0439 u0442u0435u0445u043du0438u0447u0435u0441u043au0438u0439 u0443u043du0438u0432u0435u0440u0441u0438u0442u0435u0442; u043fu0435u0440u0432u044bu0439 u0432u0443u0437 u0432 u0441u0442u0440u0430u043du0435, u043fu043eu043bu0443u0447u0438u0432u0448u0438u0439 u0441u0442u0430u0442u0443u0441 u00abu041du0430u0446u0438u043eu043du0430u043bu044cu043du043eu0433u043e u0438u0441u0441u043bu0435u0434u043eu0432u0430u0442u0435u043bu044cu0441u043au043eu0433u043e u0442u0435u0445u043du043eu043bu043eu0433u0438u0447u0435u0441u043au043eu0433u043e u0443u043du0438u0432u0435u0440u0441u0438u0442u0435u0442u0430u00bb. u0421u0435u0433u043eu0434u043du044f u0432 u0441u043eu0441u0442u0430u0432 u041du0418u0422u0423 u00abu041cu0418u0421u0438u0421u00bb u0432u0445u043eu0434u044fu0442 9 u0438u043du0441u0442u0438u0442u0443u0442u043eu0432 u0438 6 u0444u0438u043bu0438u0430u043bu043eu0432, 4 u0438u0437 u043au043eu0442u043eu0440u044bu0445 u0440u0430u0431u043eu0442u0430u044eu0442 u0432 u0420u043eu0441u0441u0438u0438 u0438 2 u0437u0430 u0440u0443u0431u0435u0436u043eu043c

«,»sameAs»:[]}]}

AB-NEWS —

    НачалоНовости вузов РоссииУченые обнаружили существование нового типа квазичастиц

Ученые обнаружили существование нового типа квазичастиц

Российские ученые экспериментально доказали существование нового типа квазичастиц – ранее неизвестных возбуждений связанных пар фотонов на цепочках кубитов

Новости вузов РоссииКвантовая физикаТехнологии

Автор: МИСиС
Дата 30.06.2021

0 181

Поделитесь страницей с друзьями!

Российские ученые экспериментально доказали существование нового типа квазичастиц – ранее неизвестных возбуждений связанных пар фотонов на цепочках кубитов. Открытие ученых может стать шагом на пути к созданию устойчивых к ошибкам квантовых вычислительных систем. Работа была опубликована в журнале Physical Review B.

На сегодняшний день сверхпроводящие кубиты являются одним из популярных и перспективных типов кубитов. Кубиты чаще всего используют для создания квантовых вычислительных устройств. При этом основными проблемами универсальных квантовых компьютеров являются декогеренция – потеря кубитами квантового состояния, которая приводит к ошибкам в ходе вычислений, и организация управляемой работы очень большого числа кубитов.

Квантовые симуляторы на основе метаматериалов – это альтернативный подход к квантовым вычислениям. В отличие от универсальных квантовых компьютеров, им не требуется большое количество управляющей электроники.

Идея этого подхода заключается в том, чтобы создать из кубитов искусственную материю, физика которой будет подчиняться тем же уравнениям, что и у какого-то реального вещества. Можно, наоборот, запрограммировать симулятор таким образом, чтобы воплотить материю со свойствами, которые в природе до сих пор обнаружить не удавалось.

Системы из сверхпроводниковых кубитов в общем случае описываются моделью Бозе-Хаббарда. При этом из-за сильной квантовой нелинейности в данной модели могут возникать так называемые дублоны – т.е. связанное состояние двух фотонов. И хотя топологические свойства дублонов уже подробно описаны теоретически, их экспериментальные подтверждения до сих пор отсутствовали.

С целью изучения важных топологических свойств дублонов группа ученых из НИТУ «МИСиС», Российского квантового центра, Университета ИТМО, МГТУ им. Н. Э. Баумана, ВНИАА и Физико-технический институт имени А. Ф. Иоффе РАН построили квантовый симулятор на основе сверхпроводниковых кубитов. Квантовые симуляторы предназначены для решения узкоспециализированных квантовых задач связанных, например, с моделированием сложных систем с большим числом частиц.

«Измеряя свойства кубитов, мы можем делать выводы о более широком классе физических систем, описываемых теми же самыми уравнениями. А если мы можем управляемым образом менять параметры этих уравнений, то такое устройство можно считать “специализированным симулятором”. Конечно, программируемость у него не такая, как у универсального квантового компьютера, но его масштабирование требует значительно меньшего количества ресурсов», – поясняет основной автор исследования Илья Беседин, младший научный сотрудник лаборатории «Сверхпроводящие метаматериалы» НИТУ «МИСиС».

Илья Беседин, главный автор работы

Учеными была реализована цепочка из сверхпроводниковых кубитов-трансмонов с чередующейся связью. Благодаря чередованию сильной и слабой связи в этой системе возникают две зоны и краевое состояние. Такое состояние относится к топологическим. Более того, эксперимент показал, что дублоны тоже формируют краевое состояние, но не со стороны слабой связи, а со стороны сильной связи.

«Нам удалось увидеть, как дублоны формируют эти зоны, и даже удалось обнаружить как на верхнем краю дублонной зоны, по мере того, как мы увеличивали длину цепочки, начинает возникать краевое дублонное состояние», – отмечает Илья Беседин.

Таким образом, российским ученым впервые удалось продемонстрировать, что цепочках кубитов могут возникать новый тип квазичастиц – дублонные топологические возбуждения.

“Исследования сверхпроводниковых кубитов и квантовых схем сейчас ведутся во многих странах мира, и конкуренция в этой области растет. Эта работа с использованием 11 кубитов убедительно демонстрирует высокий научный уровень, достигнутый в России в области квантовых вычислений на основе сверхпроводников.

-Сейчас это особенно актуально и открывает очень хорошие перспективы для развития квантовых вычислений в России.” – говорит заведующий лабораторией «Сверхпроводящие метаматериалы» НИТУ «МИСиС» и руководитель группы в Российском квантовом центре, профессор, доктор физ.-мат. наук Алексей Устинов.

Источник: ab-news.ru

Рекомендованные статьи